විග්නර්ගේ යහළුවා සිංහල
බූද්ධාගම හා ශූන්ය
මීළඟට පළවෙන
ලිපිය (Nature Physics) සඟරාවේ පළ වූ එකකි. ඉංගිරිසි එතරම් නොදන්නා මට ද
කියවා තේරුම් ගත හැකි මෙය මට වඩා ඉංගිරිසි දන්නා බොහෝ දෙනකුට තේරෙනවා ඇති. මෙහි
සිංහල පරිවර්තනයක් මා සතුව නැහැ.
මේ ලිපිය ක්වොන්ටම් භෞතිකයේ විග්නර්ගේ යහළුවා පිළිබඳවයි. පසුගිය දා කරන ලද අධ්යයනවලින් පැහැදිලි වී ඇත්තේ අඩුම තරමෙන් ක්ෂුද්ර අංශු සඳහා පරිසිද්ධි (facts) සාපේක්ෂ බව ය.
ලිපිය අග ඡෙදයේ
කතුවරයා ක්ෂූද්ර අංශු පිළිබඳව පරිසිද්ධි සාපේක්ෂ වීම නිසා ඊනියා යථාර්ථයක මූලික
ස්වභාවය ගැන ගැඹුරු දාර්ශනික ප්රශ්න මතු කරන බව කියනවා. ඒ අතර මහේක්ෂ අංශු
සම්බන්ධයෙන් අපේ තීරණ අත්දැකීම් ආදිය වාස්තවික (objective) පරිසිද්ධි මත පදනම් වේය යන බලාපොරොත්තුවක් ගැන
කියනවා.
බටහිරයන්ට
අවුරුදු සියයකට වැඩි කාලයක් තිස්සේ වාස්තවිකත්වයට එරෙහි ලෝක ගැන කියැවෙන දේ
පිළිගැනීමට බැහැ. ඔවුන්ගේ මනස් සකස් කෙරී ඇත්තේ ඊනියා යථාර්ථයකින් බැහැර වීමට
නොහැකි ආකාරයට. යථාර්ථයක් ඇති බවත්
පරිසිද්ධි වාස්තවික බවත් ඔවුන් අදහනවා. දෙවියන් වහන්සේ නැති දෙවියන් වහන්සේ
කෙනෙකු ඔවුන්ට ඉන්නවා. ඔවුන්ට මෙයින්
ගැලවෙන්න තව සෑහෙන කාලයක් යාවි. සමහර විට ගැලවෙන්නෙ නොහැකි වේවි.
බටහිරයන් සිතන
ආකාරයට මට හිතන්න බැහැ. මා ඒ බව පිළිගන්නවා. ඒත් ලංකාවේ කිසිවකුටවත් බටහිරයන් හිතන
විධියට හිතන්න බැහැ. ඔවුන්ට බටහිරයන් කියන දේ වමාරන්න නම් පුළුවන්. ලකාන්ලාගෙ
ලකයක් නැහැ. මාක්ස් එංගල්ස් ලෙනින් ආදීන්ට බැරි වෙච්ච එක ලකාන්ලාට ජිජැක්ලාට
පුළුවන් ද?
මා සිංහල
බෞද්ධයෙක්. ඕන නම් සිංහල ථෙරවාද බෞද්ධයෙක්. මියන්මාරයේ තායිලන්තයේ වැසියනුත් සිංහල
බුද්ධාගමේ. ඒ රටවල ජනයා තීහෝ කිවුව ම ලොකු ගෞරවයක් දක්වනවා. තීහෝ කියන්නේ සීහෝ
කියන එකේ මියන්මාර උච්චාරණය. සීහෝ කියන්නේ සිංහල කියන එක. මේ ගැන මා කලින් ලිපියක
දෙකකත් සඳහන් කර ඇති. මට මියන්මාරයේ අගනුවර වූ නෙ පි ටෝ නගරයේ දී තමයි තිහෝ කතාව
මුලින් ම දැනගන්න ලැබුණෙ.
සිංහල බුද්ධාගම
කියන වචන ලංකාවේ යෙදෙන්නේ නැති වුණාට මියන්මාරයේ සිට කාම්බෝජය දක්වා යොදා ගැනෙනවා.
මා සිංහල බුද්ධාගම යන වචන යොදා ගැනීම ගැන ඇතැම් සිංහල බෞද්ධයන් කැමති නැහැ.
ඔවුන්ගේ ආකල්පය තේරුම් ගැනීම තරමක් අපහසුයි.
සිංහල බෞද්ධයා
කියන්නේ බෞද්ධ වූ සිංහලයා යන්න ම නොවෙයි. සිංහල බෞද්ධයා සිංහල බුද්ධාගමේ. අප
විසින් ලෝකයට දී ඇති දහම තමයි සිංහල බුද්ධාගම. සිංහල බුද්ධාගමට ඉතිහාසයක් තියෙනවා.
බුදුහාමුදුරුවන් දෙසූ ධර්මය පදනම් කර ගත් සිංහල බුද්ධාගම පළමු දෙවැනි තුන්වැනි
සංගායනාවල සාකච්ඡා නිගමන උරුම කරගෙන තියෙනවා. තුන්වැනි සංගායනාවෙන් පසු බුද්ධාගමට
මා අශෝක බුද්ධාගම කියනවා.
හතරවැනි
සංගායනා දෙකක් ගැන ඉතිහාසයේ කියැවෙනවා. එකක් වලගම්බා කාලයේ හරි ඊට ටික කාලෙකට
පස්සෙ හරි මහාවිහාරෙ කළ සංගායනාව. අනෙක කණිෂ්ක රජු කාලෙ කළ සර්වස්තිවාදී සම්ප්රදායෙ
සංගායනාව. ථෙරවාද සම්ප්රදායෙ හතරවැනි සංගායනාව මහාවිහාරෙ කෙරුණු එක. මේ
සංගායනාවත් එක්ක පොතපත ලියලත් තිබුණ. ඒ පොතපත තමයි මියන්මාරයට තායිලන්තයට ලාඕසයට
කාම්බෝජයට ථෙරවාදය රැගෙන ගියෙ. එසේ ගෙන යන ලද බුද්ධාගම හැඳින්වෙන්නෙ සිංහල
බුද්ධාගම ලෙස.
සිංහල
බුද්ධාගමත් විකාශය වෙනවා. මියන්මාරයෙ පස්වැනි හා හයවැනි සංගායනා පවත්වල තියෙන්නෙ
සිංහල බුද්ධාගමේ සංගායනා ලෙස. හයවැනි සංගායනාව පැවතුණෙ 1954 සිට 1956
දක්වා. ඒ කාලෙ කිවුවෙ බුරුමය කියල. බුද්ධඝෝෂ හාමුදුරුවොත් සිංහල බුද්ධාගම විකාශයට
සහභාගි වුණා. මියන්මාර කතාවලට අනුව බුද්ධඝෝෂ හාමුදුරුවො මියන්මාරයටත් වැඩම කරල
තියෙනවා. මියන්මාර තායිලන්ත ලාඕ කාම්බෝජ බෞද්ධයොත් සිංහල බුද්ධාගමේ.
දැන් කාට හරි
සුපිරි බෞද්ධයකුට හිතේවි මා බුද්ධාගම විකෘති කරනවාය, බුද්ධාගම
කියන්නෙ බුදුදහම නොවේය ආදී දේ. බුදුදහම අශෝක සිංහල ආදී වශයෙන් වර්ග කරන්න බැහැ
කියාවි. මා ඔවුන්ගෙන් ඉල්ලා සිටින්නේ පළමුවැනි දෙවැනි තැන්වැනි සංගායනා අතර
වෙනස්කම් තේරුම් ගැනීමට පමණයි. මා විස්තර කරන්න යන්නෙ නැහැ.
සිංහල
බුද්ධාගමේ මා දකින ප්රධාන දුර්වලකම් දෙකක් තියෙනවා. එකක් අලුතෙන් යමක් එකතු
නොකිරීම. බුද්ධඝෝෂ හාමුදුරුවන්ගෙන් පස්සෙ අපි නිකම් ඇණ හිටි තත්වයකට පත්වෙලා. ඒත්
මහාවිහාර සම්ප්රදාය ඉතා බලවත්. මට හිතාගන්න බැහැ එතරම් බලසම්පන්න මතවාදයක් ගොඩ
නැගුවෙ කොහොම ද කියන එකවත්. අප රැකිල ඉන්නෙ මහාවිහාර සම්ප්රදාය නිසා. මහාවංසය අපේ
පමණක් නොව සිංහල බුද්ධාගම තියෙන ථෙරවාදී ලෝකයේ ම පොත බවට පත්වෙලා. අවුරුදු දෙදහකට
වැඩි කාලයක් රටවල් කිහිපයක පවතින සම්ප්රදායක් ගොඩ නැගීමකුත් හතරවැනි සංගායනාවෙන් සිද්ධ වුණෙ. මහාවංසය ලියල
තියෙන්නෙ අවුරුදු එක්දහස් පන්සීයකට පමණ පෙර එවකටත් තිබූ සිංහල බුද්ධාගම පදනම් කර
ගෙන.
සිංහල
බුද්ධාගමේ දෙවැනි දුර්වලකම හැටියට මා දකින්නෙ ශුන්ය මාධ්යමිකයන්ට පවරල අපි අනිත්ය
දුක්ඛ අනත්තට පමණක් බොහෝ විට සීමාවීම. බුදුහාමුදුරුවන් ශුන්ය ගැන දේශනා කර
තියෙනවා. මාධ්යමිකයන් ශුන්යතාව කියල සංකල්පයක් නිපදවා ගත්ත එක ඇත්ත. අප එය ගන්න
ඕන නැහැ. එහෙත් ශූන්ය යන්න අනිච්ච දුක්ඛ අනත්ත සමග කියැවෙන්නක්. බුදුහාමුදුරුවන්
ඒ හතර එකට දේශනා කළ සූත්ර තියෙනවා.
මගේ ලෝකයේ
ඇත්තේ ශූන්ය මිස ශූන්යතාව නොවෙයි. එකල සමහරුන් මා මාධ්යමිකයකු ලෙසත්
හඳුනාගත්තා. වයි කරණාදාස පොත ග්රන්ථ ප්රකාශන මණ්ඩලයට නිර්දේශ කෙළේ නැහැ. සරත්
විජේසුරිය ඒ කතාව දන්නවා. ඔහු දැන් පේන්න නැහැ. ශූන්යතාව නැතිව ශූන්ය ගැන කතා
කරන්න පුළුවන්. මා මේ සියල්ල කිවුවෙ මේ සමග පළවෙන පරිසිද්ධි සාපේක්ෂ කියන ලිපියට
පූර්විකාවක් ලෙස. බටහිර විද්යාඥයන් වගේ අපට හිතන්න බැරුව වගේ ම ඔවුන්ටත් අපට වගේ
හිතන්න බැහැ. බටහිරයන්ට මොන විධියක හරි යථාර්ථයක් අත්හරින්න බැහැ. මොන විධියක හරි
වාස්තවිකත්වයක් ඕන. ඔවුන්ට අඩු තරමෙන් වාස්තවික විඥානවාදී යථාර්ථයක් තියෙනවා.
නිවන ශූන්යයක්
නොවෙයි. සමහර බමුණන්ට නිවන ශූන්යයක් වුණා. නිවන දැනුමක්වත් විශ්වාසයක්වත් නොවෙයි.
සියළු දැනුම් විශ්වාස මත පදනම් වෙනවා. අප දන්නේ අවිජ්ජා පච්චයා සංඛාරා. අනිත්ය
දුක්ඛ අනත්ත ශුන්ය සම්මාබෝධය නැති නිසා දැනුම් සංස්කරණය කිරීමක් තමයි ඉන්
කියැවෙන්නේ. දුක්ඛ යන්නෙහිත් තේරුම අයහපත් හිස් බව කියන එක මා කියා ඇති. බටහිර
භෞතික විද්යාඥයන් දැන් අංශු ගැන කියන්නෙ නැහැ. අංශු නැතිළු. එහෙත් ක්ෂෙත්ර
තියෙනවළු. ක්ෂෙත්රත් නැති බව පස්සෙ කාලෙක කියාවි. අපි විග්නර්ගෙ යහළුවා
හම්බවෙන්න ඊළඟ ලිපියට යමු.
Facts are relative
Nature Physics volume 16, pages1172–1174(2020)
The discussion of the
quantum mechanical Wigner’s friend thought experiment has regained intensity.
Recent theoretical results and experimental tests restrict the possibility of
maintaining an observer-independent notion of measurement outcomes.
In 1983, Daniel Patrick Moynihan, an American politician,
sociologist and diplomat, wrote that “Everyone is entitled to his own opinion,
but not his own facts”. As much as this may be applied to politics, in quantum
mechanics, the objectivity of facts or ‘observed events’ in the sense that they
exist absolutely — and not relative to a particular observer — has recently
been challenged in a series of works1,2,3,4 that
build on the Wigner’s friend thought experiment5.
First conceived by physicist Eugene Wigner in 1961, the scenario results in a
situation where two observers seem to experience different facts. Writing
in Nature Physics, Kok-Wei Bong and co-workers6 have
now rigorously proved and experimentally demonstrated that a set of plausible
assumptions, together with the assumption that an observed event is objective
and not relative to anything or anyone, contradicts quantum mechanical
predictions and experimental data. The result can be interpreted to imply that
in quantum physics, observers are indeed entitled to their own facts.
In the original Wigner’s friend thought experiment, an observer
in an isolated laboratory — the friend — performs a measurement on a quantum
system in an equal superposition of two states. She randomly obtains one of two
possible outcomes and updates her system’s state to match the observed outcome.
The updated state can be verified by repeating the measurement. Meanwhile, a
‘superobserver’ outside the laboratory — Wigner — describes his friend, the
laboratory and her system as a large, composite quantum system. He is equipped
with instruments of unprecedented precision, which enable him to ascertain the
quantum state for the whole laboratory. Most importantly, his measurement that
confirms the state does not assign a well-defined value to the outcome of the
friend’s observation. From Wigner’s point of view, his friend exists in a
coherent superposition, entangled with the outcome of her measurement. This
apparently contradicts the friend’s description. Reconciling these two
perspectives is at the core of the Wigner’s friend paradox.
The observations of Wigner and his friend generate a permanent
record in the form of detector clicks or pointer positions. As such, it is tempting
to assume they both exist jointly as objective events. Mathematically, this
would mean that a joint probability may be assigned to them. It was recently
proposed1,2 to test this notion by extending the
Wigner’s friend thought experiment into a scenario to verify the compatibility
of quantum mechanics with the idea of local hidden variables7: two separated parties each choose between
two or more measurement settings to measure correlations between entangled
pairs of particles. Although, in a single run, each party can measure only one
observable, with local hidden variables it is possible to assign a joint
probability for their full set of potentially measurable observables. If local
hidden variables exist, the correlations must be constrained to satisfy the
so-called Bell inequalities. Loophole-free experiments have confirmed the
violation of the Bell inequalities, invalidating the local hidden variable
approach to establishing objective outcomes for all possible measurements8.
The extended Wigner’s friend thought experiment1,2 (Fig. 1)
features two spatially separated research laboratories, each with a friend
inside (Charlie and Debbie) and a superobserver outside (Alice and Bob,
respectively). Charlie and Debbie share an entangled pair of particles, which
they measure in their laboratories. Alice and Bob then choose between two
measurement settings. They either simply open Charlie’s and Debbie’s laboratory
respectively, asking the friends to report their measurement outcomes, or they
follow the original Wigner thought experiment and perform superobserver
measurements on the actual laboratories. Importantly, in the second setting all
potentially measurable observables are actually measured by four observers.
This gives a convincing rationale for the assumption that a joint probability
for all four measurements exists. Following the same reasoning as in the local
hidden variable approach, the correlations must satisfy the Bell inequalities1,2. One of these inequalities, with two
measurement settings per party and binary outcomes, was violated in a
six-photon experiment4,
supporting the conclusion that no joint probability exists and the
superobservers’ and the friends’ records are fundamentally incompatible.
However, for some measurement settings the argument still assumes that definite
outcomes are also assigned to unperformed measurements. This leaves open the
possibility of absolute objectivity for actually observed outcomes.
Fig. 1: The extended Wigner’s friend thought experiment.
The friends, Charlie and Debbie, are isolated in separate
laboratories. They each measure one particle from an entangled pair, obtaining
the outcomes c and d. Two superobservers, Alice
and Bob, are placed outside the laboratories and perform space-like separated
measurements with outcomes a and b. They choose
either to open the laboratories and read out Charlie’s and Debbie’s outcomes,
or to perform large interferometric measurements on the entire laboratories of
Charlie and Debbie, respectively. Bong and co-workers5 showed
that the conjunction of three reasonable assumptions — no-superdeterminism (the
choices of measurements are independent of the rest of the experiment),
locality (the outcomes are independent of the measurement choice in the distant
laboratory) and absoluteness of observed events (an observed event is a real
single event, and not relative to anything or anyone) — is in contradiction to
quantum theoretical predictions and their proof-of-principle experiment.
Consequently, at least one of the assumptions is violated in nature. Credit: G.
Rubino.
In their new work, Bong and co-workers6 started
from a set of assumptions that is less restrictive than assuming the existence
of local hidden variables (Fig. 1),
which they call ‘local friendliness’, and derived associated inequalities that
allow for absolute objectivity without involving outcomes of measurements that
were not performed. They proved that the set of local friendliness correlations
is a strict superset of the set of local hidden variable correlations, such
that it is possible for quantum correlations to violate a Bell inequality while
satisfying all the local friendliness inequalities. With only three measurement
settings per party and binary outcomes, quantum correlations already violate
the local friendliness inequalities. The authors demonstrated the anticipated violation
in a proof-of-principle experiment with a pair of photons, where each photon’s
polarization corresponded to the systems measured by Charlie and Debbie and the
photon paths took the roles of Charlie and Debbie themselves.
The argument by Bong and co-workers puts the strongest
constraints so far on the possibility that observed facts are absolute, rather
than relative to observations or observers. There are interpretations of
quantum mechanics that reject the absoluteness of events, as well as those that
retain it while violating different assumptions of the argument9.
A more conclusive experimental demonstration would require the
friend to be a system with the ability to account for a primitive notion of an
observer. Unfortunately, this is physically impractical. Extending the
experiment from photons to mesoscopic or macroscopic quantum systems would not
close the gap unless objectivity of the observed events is restored by a
collapse, as postulated by some modifications of quantum mechanics10.
To develop more convincing tests, the friends might be replaced by systems with
increasing levels of complexity, or undergoing thermodynamically irreversible
processes, which characterize the redundancy and permanency of physical facts.
That one of our most precise scientific theories might actually
be based on subjective facts at its most fundamental level raises deep
philosophical questions about the fundamental nature of reality. The hope,
however, is that our experiences and decisions in the macroscopic world remain
based on objective facts.
References
1.
Brukner, C. in Quantum[Un]Speakables II: Half a Century
of Bell’s Theorem (eds Bertlmann, R. & Zeilinger, A.) 95–117 (Springer,
2017).
2.
Brukner, C. Entropy 20, 350 (2018).
3.
Frauchiger, D. & Renner, R. Nat. Commun. 9,
3711 (2018).
4.
Proietti, M. et al. Sci. Adv. 5,
eaaw9832 (2019).
5.
Wigner, E. P. in The Scientist Speculates (ed.
Good, I. J.) 284–302 (Heinemann, 1961).
6.
Bong, K.-W. et al. Nat. Phys. https://doi.org/10.1038/s41567-020-0990-x (2020).
7.
Bell, J. S. Physics 1, 195–200 (1964).
8.
Miller, J. L. Phys. Today 69, 14 (2016).
9.
Cabello A. in What is Quantum Information? (eds
Lombardi, O. et al.) 138–144 (Cambridge Univ. Press, 2017).
10.
Bassi, A. & Ghirardi, G. Phys. Rep 379,
257–426 (2003).
ADS MathSciNet Article Google Scholar
Author information
Affiliations
Vienna Center for Quantum Science and Technology (VCQ), Faculty
of Physics, University of Vienna, Vienna, Austria
Časlav Brukner
Institute for Quantum Optics and Quantum Information
(IQOQI-Vienna), Austrian Academy of Sciences, Vienna, Austria
Časlav Brukner
Corresponding author
Correspondence to Časlav Brukner.