Universal truth contested
මේ
පසුගිය සැප්තැම්බර් 29 නිව්
සයන්ටිස්ට් සඟරාවේ සංස්කාරක සටහනයි. බටහිර
විද්යාව ගැන ඔවුන් කියන දේ වැදගත්. එහෙත් එහි කියන්නේ විද්යාවේ ප්රවාදයක් යනු
සත්යය ගැන අපට ඇති හොඳ ම අනුමානය (guess) කියා. මා ඒ සමග එකඟ වන්නේ නැහැ.
බටහිර විද්යාවේ කෙරෙන්නේ වැඩ කරන හිතළු ඉදිරිපත් කිරීමයි. සත්යය යනු කුමක් ද?
දැනුම යනු
අවිද්යාව නිසා සකසා ගන්නා බොරු පමණයි.
ගණිතය ගැන ප්ලේටෝගේ කාලයේ පවතින්නේ
සදාකාලික සත්යය යන හැඟීමක්. එය එසේ නො වේ. ගණිත ප්රමේයත් මිනිසුන්ගේ නිර්මාණ. ඒ
ප්රමේය සාධනය නොකරන ලද යම් ස්වසිද්ධි මතත් උද්ගමනයෙන් ලබාගත් අනුමාන (inference)
නීති මතත්
පදනම් වෙනවා. ඒ කෙසේ වෙතත් මෙහි ගණිත ප්රමේයවල සාධන ගැන කියන දේ වැදගත්. ඔවුන්
කතා කරන්නේ සාධනයක නිවැරදි බව දැන ගන්නේ කෙසේ ද යන්න ගැනයි.
Universal truth contested
Mathematical proofs embody a Platonic
ideal of eternal truth. Two major contested proofs this week show the need for
more controversy, not less
IT IS a truism that
science is not true. A scientific theory is merely our best guess at truth,
backed up by evidence, but waiting to be overturned by something better.
Copernicus rewrote Ptolemy; Einstein picked holes in Newton; Darwin overturned
pre-existing stories of our origins.
Mathematics is
different. Theorems proved by the ancient Greeks remain as true as ever.
Pythagoras’s theorem about the three sides of a right-angled triangle works,
will always work and won’t be improved.
It is a Platonic ideal
of truth (another Greek, of course). But two incidents this week demonstrate
that truth is sometimes out of reach in the mathematical world too.
On
Monday, eminent UK mathematician Michael Atiyah presented a claimed proof of
the Riemann hypothesis, one of the most difficult open problems in mathematics
(see “Riemann hypothesis likely remains unsolved despite claimed proof”).
Atiyah is certain he has cracked it. Most mathematicians disagree, but decline
to say so in public for fear of embarrassing him.
This
proof was only a brief sketch, so at the very least will require a lot of
fleshing out. Brevity was not the problem with the second contested proof in
the spotlight this week. In 2012, Shinichi Mochizuki claimed a solution to the
ABC conjecture, another long-standing puzzle, in a 500-page paper so dense that
his peers have argued ever since over whether it is correct. Until now, few
would commit to a public confrontation (see “Infinity war: The ongoing battle over the world’s hardest maths
proof”).
Mathematicians are a
generally genteel lot, so such a dual controversy is a rare occurrence that
surely merits statistical investigation. Barring a divine oracle to hand down
judgement, a proof can only be found true if a majority of mathematicians deem
it sufficiently rigorous. Perhaps we need a few more to stick their heads above
the parapet.